Answer:
The work done on the canister by the 5.0 N force during this time is
54.06 Joules.
Explanation:
Let the initial kinetic energy of the canister be
KE₁ =
=
= 19.44 J in the x direction
Let the the final kinetic energy of the canister be
KE₂ =
=
= 73.5 J in the y direction
Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final
= 73.5 J - 19.44 J = 54.06 J
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
Answer:
The balloon would still move like a rocket
Explanation:
The principle of work of this system is the Newton's third law of motion, which states that:
"When an object A exerts a force on an object B (action), object B exerts an equal and opposite force (reaction) on object A"
In this problem, we can identify the balloon as object A and the air inside the balloon as object B. As the air goes out from the balloon, the balloon exerts a force (backward) on the air, and as a result of Newton's 3rd law, the air exerts an equal and opposite force (forward) on the balloon, making it moving forward.
This mechanism is not affected by the presence or absence of surrounding air: in fact, this mechanism also works in free space, where there is no air (and in fact, rockets also moves in space using this system, despite the absence of air).
Answer:
However, the disadvantages are:
1. Many atimes for some motion prolems, free-body diagrams has to be drawn many times so to have enough equations to solve for the unknowns. This is not the same with energy conservation principles.
2. In situations where we need to find the internal forces acting on an object, we can't truly solve such problems using free-body diagram as it captures external forces. This is not the same with energy conservation principles.
Explanation:
Often times the ideal method to use in solving motion problem related questions are mostly debated.
Energy conservation principles applies to isolated systems are useful when object changes their positions in moving upward or downward converts its potential energy due to gravity for kinetic energy, or the other way round. When energy in a system or motion remains constant that is energy is neither created nor destroyed, it can therefore be easier to calculate other unknown paramters like in the motion problem velocity, distance bearing it in mind that energy can only change from one type to another.
On the other hand, free body diagram which is a visual representation of all the forces acting on an object including their directions has so many advantages in solving motion related problems which include finding relationship between force and motion in identifying the force acting on a body.