Answer:
= 54,000 Joules or 54 kJ
Explanation:
Electrical energy is given by the formula;
E = VIt; where V is the potential difference in volts, I is the current and t is the time in seconds.
Therefore;
Electrical energy = 120 V × 0.50 A × 15 ×60 seconds
= 54,000 Joules
Thus; the electrical energy is 54,000 joules or 54 kJ
IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
Time period = time/no. of waves = 6/3 = 2s
Answer:
The mass rate of the cooling water required is: 
Explanation:
First, write the energy balance for the condensator: The energy that enters to the equipment is the same that goes out from it; consider that there is no heat transfer to the surroundings and kinetic and potential energy changes are despreciable.

Where w refers to the cooling water and s to the steam flow. Reorganizing,

Write the difference of enthalpy for water as Cp (Tout-Tin):

This equation will let us to calculate the mass rate required. Now, let's get the enthalpy and Cp data. The enthalpies can be read from the steam tables (I attach the tables I used). According to that,
and
can be calculated as:
.
The Cp of water at 25ºC (which is the expected average temperature for water) is: 4.176
. If the average temperature is actually different, it won't mean a considerable mistake. Also we know that
, so let's work with the limit case, which is
to calculate the minimum cooling water mass rate required (A higher one will give a lower temperature difference as a result). Finally, replace data:
