It would be approximately 489 g, rounded for significant figures. The calculator given answer would be 489.20326. To get that, all you have to do is take your 6.11 moles and multiply it by 80.066 (the molar mass) divided by 1 mol to cancel out the unit.
The radius of a chlorine ion is larger than the radius of a chlorine atom because the effective nuclear charge decreases, therefore the inward force decreases, increasing the ionic radius.
Answer:
The energy released in the decay process = 18.63 keV
Explanation:
To solve this question, we have to calculate the binding energy of each isotope and then take the difference.
The mass of Tritium = 3.016049 amu.
So,the binding energy of Tritium = 3.016049 *931.494 MeV
= 2809.43155 MeV.
The mass of Helium 3 = 3.016029 amu.
So, the binding energy of Helium 3 = 3.016029 * 931.494 MeV
= 2809.41292 MeV.
The difference between the binding energy of Tritium and the binding energy of Helium is: 32809.43155 - 2809.412 = 0.01863 MeV
1 MeV = 1000keV.
Thus, 0.01863 MeV = 0.01863*1000keV = 18.63 keV.
So, the energy released in the decay process = 18.63 keV.
Answer:
Fe + CuCl2 = FeCl2 + Cu
Explanation:
This is already balanced.
Good electrical conductivity and electronegativities less than 1.7 are the properties and characteristic of Group 2 elements at STP.
<h3>What are the properties of group 2 elements?</h3>
Group 2 elements are metals so they are good conductors of heat and electricity. It has electronegativity values less than 1.7 and very reactive. They form 2+ charge in cationic form and also formed ionic bonds with other negatively charged elements.
So we can conclude that good electrical conductivity and electronegativities less than 1.7 are the properties and characteristic of Group 2 elements at STP.
Learn more about electronegativity here: brainly.com/question/2415812
#SPJ1