7.86 is the pOH of water at this temperature of 100 degrees celsius.
Option E is the right answer.
Explanation:
Data given:
Kw = 51.3 x 
pOH = ?
we know that pure water is neutral and will have pH pf 7.
The equation for relation between Kw and H+ and OH- ion is given by:
Kw = [H+] [OH-}
here the concentration of H+ ion and OH- ion is equal
so, [H+]= [OH-]
Putting the values in the equation of Kw
pKw = -log[Kw]
pKw = -log [51.3 x
]
pKw = 12.28
since H+ ion OH ion concentration is equal the pH of water is half i.e. 6.14
Now, pOH is calculated by using the equation:
14 = pOH + pH
14- 6.14 = pOH
pOH = 7.86
Answer:
Four times the original amount if only one orange was used
Explanation:
We can assume that the oranges all have equal voltages. Connecting them in series will have an increasing effect on the voltage delivered. In our case, this will produce 4 times the voltage of the circuit when only one orange is used.
Whenever simple cells are connected in series, the voltages of the individual cells are added up to form the voltage of the whole circuit.
Let us assume that the voltage of each of the oranges is approximately 0.9 volts. The Voltage produced when the 4 oranges are joined in series is 0.9 + 0.9 + 0.9 + 0.9 = 3.6 volts
Answer:
C - show 7 neutrons in the nucleus
Explanation:
Use process of elimination:
-Answer A will not work because electrons are not in the nucleus.
-Answer B will change the atom's identity from nitrogen to fluorine; it will not work.
-Answer D will create a nitrogen ion, which is not what the prompt is asking for (an atom); it will not work.
The only logical answer is C, as that is the only one that is also true.
Metal period- Reactivity Gets smaller as you move from left to right.
Group- Reactivity gets bigger as you move down a group.