Its often used for monuments because of its beauty and its variety of colors
If an object whose mass is growing keeps the same, unchanged
kinetic energy, then its motion must slow down, because
Kinetic Energy = (1/2) (mass) (speed)² .
Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
Answer:
One of the leading theories of hot-Jupiter formation holds that gas giants in distant orbits become hot Jupiters when the gravitational influences from nearby stars or planets drive them into closer orbits. They formed as gas giants beyond the frost line and then migrated inwards.
Explanation:
In the migration hypothesis, a hot Jupiter forms beyond the frost line, from rock, ice, and gases via the core accretion method of planetary formation. The planet then migrates inwards to the star where it eventually forms a stable orbit. The planet may have migrated inward smoothly via type II orbital migration.
Hot-Jupiters are heated gas giant planets that are very close to their stars, just a few million miles distant and orbiting their stellar hosts in just a few days. The reason why there isn't one in our Solar System is down to its formation. All gas giants form far from their star but then some migrate inwards.
Hot-Jupiters will just happen to transit about 10% (that is, since orbital planes) this is consistent with the rate expected from geometry of . The actual frequencies of hot Jupiters around normal stars is surprisingly hard to figure out.
Answer:
what is the question in "2. A race car rounding a corner at a constant speed of 200 miles per hour. Yes not"