CdCl2+2NH4NO3
It is substitution reaction
Cd is metal with 2+ which connect with Cl(-)
NO3 with NH4 form salt
Answer:
Sodium is more reactive than lithium because as we move down a group it is easy to lose electrons as the number of shells increases and nuclear charge decreases. As valence electrons take part in chemical reaction and its easier to lose electrons as we move down a group chemical reactivity increases. Therefore, sodium is more reactive than lithium.
Explanation:
I gotcha I searched it up
Hello,
Here is your answer:
The proper answer to this question is "deposition".
Your answer deposition.
If you need anymore help feel free to ask me!
Hope this helps!
Answer:
Option D.
Explanation:
First we convert the given reactant masses into moles, using their respective molar masses:
- 4.00 g H₂ ÷ 2 g/mol = 2 mol H₂
- 6.20 g P₄ ÷ 124 g/mol = 0.05 mol P₄
0.05 moles of P₄ would react completely with (6*0.05) 0.3 moles of H₂. There are more H₂ moles than required, meaning H₂ is in excess and P₄ is the limiting reactant.
Now we<u> calculate how many PH₃ moles could be formed</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.05 mol P₄ *
= 0.2 mol PH₃
Finally we <u>convert 0.2 mol PH₃ into grams</u>, using its <em>molar mass</em>:
- 0.2 mol PH₃ * 34 g/mol = 6.8 g
So the correct answer is option D.
Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.