Answer:
a)
, b)
, c)
.
Explanation:
a) Let assume that car travel on a horizontal surface. The equations of equilibrium of the car are:


After some algebraic handling, the following expression for the propulsion force is constructed:



b) The power require to move the car at a speed of 5 meters per second is:



c) The efficiency of the car is:


Answer:
U = 80.91 J
Explanation:
In order to calculate the electric potential energy between the three charges you use the following formula:
(1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q1: q2 charge
r1,2: distance between charges 1 and 2.
For the three charges you have:
(2)
You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:
q = 1.45μC = 1.45*10^-6C
r = 0.700mm = 0.700*10^-3m

The electric potential energy between the three charges is 80.91 J
Answer:
Answer:196 Joules
Explanation:
Hello
Note: I think the text in parentheses corresponds to another exercise, or this is incomplete, I will solve it with the first part of the problem
the work is the product of a force applied to a body and the displacement of the body in the direction of this force
assuming that the force goes in the same direction of the displacement, that is upwards
W=F*D (work, force,displacement)
the force necessary to move the object will be

Answer:196 Joules
I hope it helps
My best guess would be sun because it is bright but is surrounded by shadows on all sides.
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time