Ionic bonds are the weakest bonds.
Correct answer is
.
Phosphoric acid is a polyprotic acid having 3 acidic hyrdogen therefore it will have 3 pka values.
The equations for the release of acidic hydrogen can be written as:

From the pka values we can judge the idea of pH as using Henderson-Hasselbalch Equation, we get the relation between pH and pka.

Using the following equation, relation of pH and pka is
![pH=pka+log\frac{[A^-]}{HA}](https://tex.z-dn.net/?f=pH%3Dpka%2Blog%5Cfrac%7B%5BA%5E-%5D%7D%7BHA%7D)
Using this equation, we can find that the equation having pka= 2. 14 is closest to the pH=3.2 so the ionic form in this equation will be dominant at the same pH.
Therefore at pH=3.2 the ionic form
of
is dominant.
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase
A cohesive force is best described as the attraction between two liquid molecules. Cohesive forces are the inter-molecular forces between similar molecules, which cause a tendency in liquids to resist separation. For example a water drop is composed of water molecules that like to stick together