Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.
Answer:
A) OA, AB, BC
B) 25m/s^2
C) see explanation
D) 25
E) Rest
Explanation:
From the Velocity time graph shown:
The positive slope = OA ; This is positive because, it is the point of uniform acceleration on the graph.
Constant slope = AB, the slope here is constant because, AB on the graph is the point of constant velocity.
-ve slope = BC
B) Acceleration of body in path OA.
Acceleration = change in Velocity / time
Acceleration = (150 - 0) / 6
Acceleration = 150/6 = 25m/s^2
C) Path AB is Parallel to the because it marks the period of constant velocity (that is Velocity does not increase or decrease during the time interval).
D) Length of BC
BC corresponds to the distance moved, that velocity / time
Velocity = 150 ; time = 6
Therefore Distance (BC) = 150/6 = 25
E.) Velocity =0 ; Hence body is at rest
Answer:
A.
Explanation:
NEAR THE CENTER OF TECTONIC PLATES.
When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!
Given:
initial angular speed, = 21.5 rad/s
final angular speed, = 28.0 rad/s
time, t = 3.50 s
Solution:
Angular acceleration can be defined as the time rate of change of angular velocity and is given by:
Now, putting the given values in the above formula:
Therefore, angular acceleration is: