Answer:
Its final temperature is 25.8 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal-Tinitial)
When a body transmits heat there is another that receives it. This is the principle of the calorimeter. Then the heat released by the compound will be equal to the heat obtained by the calorimeter.
In this case, you know:
- c= 3.55

- m=1.20 kg= 1200 g (1 kg=1000 g)
- Tfinal= ?
- Tinitial= 22.5 °C
Replacing:

Solving:

3.3=Tfinal - 22.5 C
3.3 + 22.5=Tfinal
Tfinal= 25.8 °C
<u><em>Its final temperature is 25.8 °C</em></u>
Answer:
The air pressure is 9.8 *10^4 pa
The water will rise to a height of 10.0 meter
Explanation:
Step 1: Data given
As a storm from moves in, you notice that a column of mercury in a barometer rises to 736 mm.
Step 2: Calculate the air pressure
The Pressure against the mercury column = h*d*g = 0.736 * 13593 * 9.81 = 9.8 * 10^4 Pa
Step 3: Calculate the height of the water
Let the Pressure the water column for same pressure is h meter : -
9.8 * 10^4 = h*d*g
=>9.8*10^4 = h*1000*9.81
=>h = 10.0 meter
The water will rise to a height of 10.0 meter
Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ = 
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ = 
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ = 
= 35.325 molal
Answer:
The problem solution is given in the attachments.