Since chlorine is one of the 7 diatomic elements we know that chlorine appears as Cl₂ gas naturally. That means that the molar mass of a chlorine gas is 70.9g/mol. That being said, first you need to find the number of moles of chlorine gas that are present in a 35.5g sample. To do this divide 35.5g by the molar mass of chlorine gas (70.9g/mol) to get 0.501mol of chlorine. Then you have to multiply 0.501mol by 6.02×10²³ to get the number of chlorine gas molecules. Therefore 3.01×10²³ molecules of chlorine gas are present in a 35.5g sample.
I hope that helps. Let me know in the comments if anything is unclear.
Answer:
1.3 M
Explanation:
The question asks to calculate the molarity of a solution.
We have to use the following equitation:
Molarity = # moles / 1 lt of solution
In this case we have a solution composed of 0.65 mol of NaF diluted in a total volume of 0.5 lt. We will have to do the following cross multiplication solving for x:
0.65 mol NaF / 0.5 lt = x mol NaF/ 1 lt
x = 1.3 mol NaF / 1 lt = 1.3 M
Alcoholic fermentation is mainly used by various yeast species to make energy.
If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.
The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.
C because the more amounts of mass an object has will give it a bigger gravitational field