To solve this question, we first need to know the mass of one mole of mercury. This can be done by checking the periodic table.
From the periodic table, we can see that:
molar mass of mercury = 200.59 grams/mole.
From the measurements, the chemist found that the participated amount of mercury is 0.02 moles.
We can simply determine the mass of 0.02 moles by doing cross multiplication as follows:
mass of 0.02 moles = (0.02 x 200.59) / 1 = 4.0118 grams
Rounding the answer to 2 significant digits, we get:
mass of 0.02 moles = 4.01 grams
Depends on where you live but generally speaking it is either June or July
Answer:
Well, carbon monoxide can be created from formic acid by adding sulphuric acid which will dehydrate said formic acid:
HCOOH
−
→
−
−
−
H
2
SO
4
CO+H
2
O
HCOOH→HX2SOX4CO+HX2O
Therefore, we can imagine the reverse reaction theoretically, which would make carbon monoxide an acidic oxide. However, the forward reaction does not proceed easily and it needs both the high acidity of sulphuric acid and its strong dehydrative properties to actually work. And your question mentions using hot, concentrated sodium hydroxide to make the reverse one work.
Most oxides that are classified as acidic or basic either have a very electrophilic central atom (e.g.
CO
2
COX2
) which can be attacked by the weak nucleophile water (which in turn can then release an acidic proton), or they have a high charge density on the oxygen which allows it to abstract a proton from water directly. Carbon monoxide is neither. If you check out its molecular orbitals, you will notice that even though carbon is partially positive it has the largest HOMO contribution, meaning a proton would be more likely to attatch to the carbon side — which doesn’t want one at all. The LUMO is, luckily, also more carbon-centred, meaning nucleophilic attacks on carbon are possible. However, it is also degenerate due to the double bond so that an attack is not favoured.
Thus, the carbon monoxide molecule is one that won’t react with water at all and totally defies the concept of acidic/basic oxides.
Abbreviations:
HOMO is a widely used abbreviation for the Highest Occupied Molecular Orbital, i.e. the one with the highest energy that still contains electrons. It is usually the orbital that will attack nucleophilicly or that will be attacked electrophilicly.
LUMO is a widely used abbreviation for the Lowest Unoccupied Molecular Orbital, i.e. the virtual (unoccupied) orbital that has the lowest energy. When considering a nucleophilic attack, the attacking electrons will usually interact with the LUMO. Electrophiles attack with other molecules’ HOMO with their LUMO.
Explanation:
If your science teacher says B, it’s probably because water has a negative and positive end, heat is just a form of energy, as other atoms can’t leave (they’re attracted to the ends) they are being insulated; but notice that ice will melt into gas (where atoms have tons of space) for other atoms to escape. Hence ice and gas aren’t ideal. (Air is a gas here.)
It’s not a 100% but hopefully it helps with some kind of analogy.
Answer:
cis 2,3-dibromo- 2-butene
trans 2,3-dibromo- 2-butene
Explanation:
The cis-trans or geometric isomerism is due to restricted rotation around a carbon-carbon bond. This restriction may be due to the presence of double bonds or cycles.
The carbon-carbon double bond prevents free rotation of atoms in molecules. These two molecules have the same atoms, but they are different molecules. They are geometric isomers to each other.
The given compound can exist in the form of two isomers, cis and trans. The isomer that has the substituents on the same side is called cis, and the one that has them on opposite sides is trans.