Answer:
Explanation:
As we know that the ball is projected upwards so that it will reach to maximum height of 16 m
so we have

here we know that

also we have

so we have


Now we need to find the height where its speed becomes half of initial value
so we have

now we have





The answer is reflection.
The drawing is simple but illustrates the concept beautifully.
Answer:
R = 98304.75 m = 98.3 km
Explanation:
The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.
Density = Mass/Volume
Now, it is given that the density of Earth has become:
Density = 1 x 10⁹ kg/m³
Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg
Volume = 4/3πR³ (Volume of Sphere)
R = Radius of Earth = ?
Therefore,
1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]
4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)
R³ = (3/4)(5.97 x 10¹⁵ m³)/π
R = ∛[0.95 x 10¹⁵ m³]
<u>R = 98304.75 m = 98.3 km</u>
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.