Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />
Answer:
51.94°
Explanation:
= Unpolarized light
= Light after passing though second filter = 
Polarized light passing through first filter

Polarized light passing through second filter

The angle between the two filters is 51.94°
What is the Investigation about!
Answer:

Explanation:
<u>Coulomb's Law</u>
The force between two charged particles of charges q1 and q2 separated by a distance d is given by the Coulomb's Law formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We know both charges are identical, i.e. q1=q2=q. This reduces the formula to:

Since we know the force F=1 N and the distance d=1 m, let's find the common charge of the spheres solving for q:

Substituting values:


This charge corresponds to a number of electrons given by the elementary charge of the electron:

Thus, the charge of any of the spheres is:

