Given Information:
Radius = ra = 2.60 cm = 0.026 m
Density = J = 15.0 nC/m
change in potential difference = ΔV = 200 V
Required Information:
Distance = d = ?
Answer:
distance = 0.088 m
Explanation:
As we know
ΔV = Vb - Va = J/4πε₀*ln(rb/ra)
Where ra and rb is the point where potential difference is Va and Vb respectively
1/4πε₀ = 9x10⁹ N.m²/C²
We want to find the distance d = rb - ra
ΔV = J/4πε₀*ln(rb/ra)
200 = 9x10⁹*15x10⁻⁹*ln(rb/ra)
200/135 = ln(rb/ra)
1.48 = ln(rb/ra)
taking e on both sides yields
e^(1.48) = rb/ra
4.39 = rb/ra
rb = 4.39*0.026
rb = 0.114 m
Therefore, the required distance is
d = rb - ra
d = 0.114 - 0.026
d = 0.088 m
Therefore, the other probe must be placed 0.088 m from the surface so that the voltmeter reads 200 V
Please help me with the unit assessment i have no idea any of the answers
The state of matter that has particles that slide by one another is liquid because liquid is very slippery.
Stable isotopes, radioisotopes, oxygen
First, it makes your skin feel cooler<span> when it's wet. And when it </span>evaporates<span> it removes some heat. But sweat will only </span>evaporate<span> in an environment where there isn't much</span>water<span> in the air. In a place with high humidity, there're already lots of </span>water<span> molecules in the air. </span>