<span>Subrahmanyan Chandrasekhar
</span>
The answer is mass. I have to comment more than 20 characters.
<span>division of Earth's history into time units based largely on the types of life-forms that lived only during certain periods.</span>
Answer:
The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.
Explanation:
Force is any cause capable of modifying the state of motion or rest of a body or of producing a deformation in it. Any force can be decomposed into two vectors, so that the sum of both vectors matches the vector before decomposing. The decomposition of a force into its components can be done in any direction.
Taking into account the simple trigonometric relations, such as sine, cosine and tangent, the value of their components and the value of the angle of application, then the parallel and perpendicular components will be:
- Fparallel = F*sinα =300 N*sin 67.8° =300 N*0.926⇒ Fparallel =277.8 N
- Fperpendicular = F*cosα = 300 N*cos 67.8° = 300 N*0.378 ⇒ Fperpendicular= 113.4 N
<u><em>The component of the force due to gravity perpendicular and parallel to the slope is 113.4 N and 277.8 N respectively.</em></u>
Answer:
a) 3.37 x 
b) 6.42kg/
Explanation:
a) Firstly we would calculate the volume of the metal using it`s weight in air and water , after finding the weight we would find the density .
Weight of metal in air = 50N = mg implies the mass of metal is 5kg.
Now the difference of weight of the metal in air and water = upthrust acting on it = volume (metal) p (liquid) g = V (1000)(10) = 14N. So volume of metal piece = 14 x
. So density of metal = mass of metal / volume of metal = 5 / 14 x
= 3.37 x 
b) Water exerts a buoyant force to the metal which is 50−36 = 14N, which equals the weight of water displaced. The mass of water displaced is 14/10 = 1.4kg Since the density of water is 1kg/L, the volume displaced is 1.4L. Hence, we end up with 3.57kg/l. Moreover, the unknown liquid exerts a buoyant force of 9N. So the density of this liquid is 6.42kg/