Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Answer:
(A) 1.43secs
(B) -2.50m/s^2
Explanation:
A commuter backs her car out of her garage with an acceleration of 1.40m/s^2
(A) When the speed is 2.00m/s then, the time can be calculated as follows
t= Vf-Vo/a
The values given are a= 1.40m/s^2 , Vf= 2.00m/s, Vo= 0
= 2.00-0/1.40
= 2.00/1.40
= 1.43secs
(B) The deceleration when the time is 0.800secs can be calculated as follows
a= Vf-Vo/t
= 0-2.00/0.800
= -2.00/0.800
= -2.50m/s^2
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that the friction force on two boxes is given as



Now we know by Newton's II law

so we have




Part b)
For block B we know that net force on it will push it forward with same acceleration so we have




Part c)
If Alex push from other side then also the acceleration will be same
So for box B we can say that Net force is given as




Answer:
Yes... definitely true.. can you tell me what is the question..
Explanation:
Please mark me brainliest :D
And also.. I would appreciate it if you give me 5 stars and a thanks.. :D
All are true except the first two.