Answer:
The force is the same
Explanation:
The force per meter exerted between two wires carrying a current is given by the formula

where
is the vacuum permeability
is the current in the 1st wire
is the current in the 2nd wire
r is the separation between the wires
In this problem

Substituting, we find the force per unit length on the two wires:

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.
The same conclusion comes out from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).
Answer: The Earth's layer, which has the covering and layer, is made of a progression of things, or structural plates, that creep after some time. Along these lines, at intersecting limits, mainland outside is made and maritime covering is devastated. 2 plates slippy past each other structures a redesign plate limit.
A) The acceleration is due to gravity at any given point if you look at it vertically, so

.
b)

, so

. We use

and then the final speed must be 0 because it stops at the highest point. So

. Solve for

and you get

c)

, and then we plug the values:

and we already have the time from "b)", so
![Y_m_a_x = [(32sin(25))*(32sin(25)/10)] - 5(32sin(25)/10)^2](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%20%5B%2832sin%2825%29%29%2A%2832sin%2825%29%2F10%29%5D%20-%205%2832sin%2825%29%2F10%29%5E2)
; then we just rearrange it
![Y_m_a_x = 10[(32sin(25))^2/100] - 5 [(32sin(25))^2/100]](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%2010%5B%2832sin%2825%29%29%5E2%2F100%5D%20-%205%20%5B%2832sin%2825%29%29%5E2%2F100%5D%20)
and finally
Kepler's hypothesis to describe the motions of the planets was derived from
the meticulous observations performed and recorded by Tycho Brahe.