Answer: 15.6 metres
Explanation:
Given that:
length of wave (λ)= ?
Frequency of wave F = 28 Hertz
Speed of wave (V) = 437 m/s
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
Make λ the subject formula
λ = V / F
λ = 437 m/s / 28 Hertz
λ = 15.6 m
Thus, the length of the wave is 15.6 metres
When a car<span> rounds a corner at a constant </span>speed<span>, its acceleration is zero. Suppose you are in a </span>car<span> that is going around a curve. The speedometer reads a constant 30 miles per hour. ... </span>Describe the speed<span> of the object from 4-6 seconds using the distance vs. time graph.</span>
In the first law, an object will not change its motion unless a force acts on it. So I think the answer is A. Only objects that are moving.
Answer:
0.2932 rad/s
Explanation:
r = Radius = 2 m
= Initial angular momentum = 
= Initial angular velocity = 14 rev/min
= Final angular momentum
= Final angular velocity
Here the angular momentum of the system is conserved

The final angular velocity is 0.2932 rad/s
Answer:
(a) decrease
Explanation:
Viscosity is the resistance which occur to flow of the fluid.
More the inter molecular forces between particles of the liquid, more the viscosity of liquid.
<u>Effect of temperature on viscosity:-</u>
Viscosity decreases with the increase in the temperature as forces among the particles decrease on increasing temperature. The kinetic energy of the particles of the liquid increases causing to move in more random motions and thus weaker inter molecular forces and this offer less resistance to the flow.
<u>Hence, viscosity of the liquids decrease with the increasing temperature.</u>