The exit temperature is 586.18K and compressor input power is 14973.53kW
Data;
- Mass = 50kg/s
- T = 288.2K
- P1 = 1atm
- P2 = 12 atm
<h3>Exit Temperature </h3>
The exit temperature of the gas can be calculated isentropically as

Let's substitute the values into the formula

The exit temperature is 586.18K
<h3>The Compressor input power</h3>
The compressor input power is calculated as

The compressor input power is 14973.53kW
Learn more on exit temperature and compressor input power here;
brainly.com/question/16699941
brainly.com/question/10121263
Answer:
576.21kJ
Explanation:
#We know that:
The balance mass 
so, 

#Also, given the properties of water as;

#We assume constant properties for the steam at average temperatures:
#Replace known values in the equation above;
#Using the mass and energy balance relations;

#We have
: we replace the known values in the equation as;

#Hence,the amount of heat transferred when the steam temperature reaches 500°C is 576.21kJ
Answer:
F = 0.0022N
Explanation:
Given:
Surface area (A) = 4,000mm² = 0.004m²
Viscosity = µ = 0.55 N.s/m²
u = (5y-0.5y²) mm/s
Assume y = 4
Computation:
F/A = µ(du/dy)
F = µA(du/dy)
F = µA[(d/dy)(5y-0.5y²)]
F = (0.55)(0.004)[(5-1(4))]
F = 0.0022N
Answer:
The following statements are true:
A. For flows over a flat plate, in the laminar region, the heat transfer coefficient is decreasing in the flow direction
C. For flows over a flat plate, the transition from laminar to turbulence flow only happens for rough surface
E. In general, turbulence flows have a larger heat transfer coefficient compared to laminar flows 6.
Select ALL statements that are TRUE
B. In the hydrodynamic fully developed region, the mean velocity of the flow becomes constant
D. For internal flows, if Pr>1, the flows become hydrodynamically fully developed before becoming thermally fully developed
Explanation: