The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Answer:
1.52g
Explanation:
Given parameters:
Force = 125N
Mass combined = 82kg
Unknown:
Acceleration of the bicycle = ?
Solution:
From Newton second law of motion suggests that:
Force = mass x acceleration
Acceleration =
=
= 1.52g
Answer: 100cm
Explanation:
The force of friction on a surface normal to gravity where µ is the coefficient of friction is
F = µmg
Where
F = the friction force
µ = coefficient of friction
m = mass of the object
g = acceleration due to gravity
Also, the Kinetic Energy of the object, E = Fs, where
E = Kinetic Energy
s = stopping distance. So that,
E = µmgs
40 J = 0.4 * 10 kg * 10 m/s² * s
40 J = 40 kgm/s² * s
s = 40 J / 40 kgm/s²
s = 1 m or 100 cm
Systematic is just a certain way of doing something. So science being systematic may just refer to the scientific method or how theories are proved in science by repeating the scientific method over and over again.