Answer:
Uranium mines operate in many countries, but more than 85% of uranium is produced in six countries: Kazakhstan, Canada, Australia, Namibia, Niger, and Russia. Historically, conventional mines open pit or underground were the main source of uranium.
Explanation:
Hope this helps
Answer:
<em>A solution containing 60 grams of nano3 completely dissolved in 50. Grams of water at 50°c is classified as being</em> <u>supersaturaded</u>
Explanation:
This question is about solubility.
Regarding solubility, the solutions may be classified as:
- Unsaturated: the concentration is below the maximum concentration permited at the given temperature.
- Saturated: the concentration is the maximum permitted at the given temperature, under normal conditions.
- Supersaturated: the concentration has overcome the maximum permitted at the given temperature. This is possible only under special conditions and is a very unstable state.
Each substance has its own, unique solubility properties. So, in order to tell the state of the solution you need to compare with either solubility tables, or solubility curves; or run you own experiments.
- In internet you can find the solubility curve of NaNO₃ showing the solubility for a wide range of temperatures.
- In such curve the solubility of NaNO₃ at 50°C is about 115 g of NaNO₃ per 100 g of water.
- Hence, do the proportion to determine the amount of solute that can be dissolved in 50 grams of water at 50°CÑ
115 g NaNO₃ / 100 g H₂O = x / 50 g H₂O ⇒ x = 57.5 g NaNO₃
- <u>Conclusion</u>: 50 grams of water can contain 57.5 g of NaNO₃ dissolved; so, <em>a solution containing 60 g of NaNO₃ completely dissolved in 50 grams of water is supersaturated.</em>
<em />
Nobelium discovered in Berkeley California
Answer:
46.784886 amu is the average atomic mass of titanium on that planet.
Explanation:
Fractional abundance of Ti-46 =72.000% = 0.72000
Atomic mass of Ti-46 = 45.95263 amu
Fractional abundance of Ti-48 =14.300% = 0.14300
Atomic mass of Ti-48 = 47.94795 amu
Fractional abundance of Ti-50 =13.700% = 0.13700
Atomic mass of Ti-50 = 49.94479 amu

Average atomic mass of titanium atom:

46.784886 amu is the average atomic mass of titanium on that planet.
Answer:
its c.
Explanation:
Good Luck! And happy holidays guys.