The answer should be D all of the above
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration , . Thus according to the Machaelis-Menten equation becomes
Here since the varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
Here the initial velocity changes directly with the substrate concentration as is directly proportional to [S]. But is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.
The answer is C. Hydrogen Bond
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg