The volume of the stock solution needed is 213.88 mL to get new concentration.
<h3>What is molarity?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of a solute per litres of a solution.
Determination of the volume of stock solution.
Volume of diluted solution (V₂) =550 mL
Molarity of diluted solution (M₂) =0.70 M
Molarity of stock solution (M₁) = 1.8 M
Volume of stock solution needed (V₁) =?
M₁V₁ = M₂V₂
1.8 M × V₁ = 0.70 M × 550 mL
V₁ = 213.88 mL
Thus, the volume of the stock solution needed is 213.88 mL.
Learn more about the molarity here:
brainly.com/question/2817451
#SPJ1
Answer:
Q = -18118.5KJ
W = -18118.5KJ
∆U = 0
∆H = 0
∆S = -60.80KJ/KgK
Explanation:
W = RTln(P1/P2)
P1 = 1bar = 100KN/m^2, P2 = 1500bar = 1500×100 = 150000KN/m^2, T = 23°C = 23 + 273K = 298K
W = 8.314×298ln(100/150000) = 8.314×298×-7.313 = -18118.5KJ ( work is negative because the isothermal process involves compression)
∆U = Cv(T2 - T1)
For an isothermal process, temperature is constant, so T2 = T1
∆U = Cv(T1 - T1) = Cv × 0 = 0
Q = ∆U + W = 0 + (-18118.5) = 0 - 18118.5 = -18118.5KJ
∆H = Cp(T2 - T1)
T2 = T1
∆H = Cp(T1 - T1) = Cp × 0 = 0
∆S = Q/T
Mass of water = 1kg
Heat transferred (Q) per kilogram of water = -18118.5KJ/Kg
∆S = (-18118.5KJ/Kg)/298K = -60.80KJ/KgK
NaCl:
Na = + 1
Cl = - 1
hope this helps!
Answer:
Cu + 4HNO3 ---> Cu(NO3)2 + 2NO2 + 2H2O.
Explanation:
Balancing:
Cu + 4HNO3 ---> Cu(NO3)2 + 2 NO2 + 2H2O.
Answer:
1 mole of C2H6.
Explanation:
The balanced equation for the reaction is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
We can determine the number of mole of C2H6 that reacted to produce 2 moles of CO2 as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 4 moles of CO2.
Therefore, Xmol of C2H6 will react to produce 2 moles of CO2 i.e
Xmol of CO2 = (2 x 2)/4
Xmol of CO2 = 1 mole.
Therefore, 1 mole of C2H6 is required to produce 2 moles of CO2.