Answer:
the position of the wood below the interface of the two liquids is 2.39 cm.
Explanation:
Given;
density of oil,
= 926 kg/m³
density of the wood,
= 974 kg/m³
density of water,
= 1000 kg/m³
height of the wood, h = 3.69 cm
Based on the density of the wood, it will position across the two liquids.
let the position of the wood below the interface of the two liquids = x
Let the wood be in equilibrium position;
![F_{wood} - F_{oil} - F_{water} = 0\\\\\rho _{wood} .gh - \rho _o .g(h-x) - \rho_w .gx = 0\\\\\rho _{wood} .h - \rho _o (h-x) - \rho_w .x = 0\\\\\rho _{wood} .h -\rho _o h + \rho _o x - \rho_w .x =0\\\\h (\rho _{wood} -\rho _o ) = x( \rho_w - \rho _o)\\\\x =h[\frac{ \rho _{wood} -\rho _o }{\rho_w - \rho _o} ]\\\\x = 3.69\ cm \times [\frac{974 - 926}{1000-926} ]\\\\x = 2.39 \ cm](https://tex.z-dn.net/?f=F_%7Bwood%7D%20-%20F_%7Boil%7D%20-%20F_%7Bwater%7D%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.gh%20-%20%5Crho%20_o%20.g%28h-x%29%20-%20%5Crho_w%20.gx%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%20%5Crho%20_o%20%28h-x%29%20-%20%5Crho_w%20.x%20%3D%200%5C%5C%5C%5C%5Crho%20_%7Bwood%7D%20.h%20-%5Crho%20_o%20h%20%2B%20%5Crho%20_o%20x%20-%20%5Crho_w%20.x%20%3D0%5C%5C%5C%5Ch%20%28%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%29%20%3D%20x%28%20%5Crho_w%20-%20%5Crho%20_o%29%5C%5C%5C%5Cx%20%3Dh%5B%5Cfrac%7B%20%5Crho%20_%7Bwood%7D%20%20-%5Crho%20_o%20%7D%7B%5Crho_w%20-%20%5Crho%20_o%7D%20%5D%5C%5C%5C%5Cx%20%3D%203.69%5C%20cm%20%5Ctimes%20%5B%5Cfrac%7B974%20-%20926%7D%7B1000-926%7D%20%5D%5C%5C%5C%5Cx%20%3D%202.39%20%5C%20cm)
Therefore, the position of the wood below the interface of the two liquids is 2.39 cm.
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.
His speed is exactly (350/27) miles per second ... about 46,667 mph. Wotta guy !
Answer:
an object sliding down hill
Explanation:
On a slope, the force applied is due to gravity. Its direction is straight down. If the object is sliding down the hill, its displacement is at an angle to the applied force. The angle of displacement will depend on the steepness of the hill.
Answer:
4.02 s
Explanation:
From the question given above, the following data were obtained:
Angle of projection (θ) = 35°
Initial velocity (u) = 50 m/s
Acceleration due to gravity (g) = 10 m/s²
Time of flight (T) =?
The time of flight of the arrow can be obtained as follow:
T = 2uSineθ / g
T = 2 × 35 × Sine 35 / 10
T = 70 × 0.5736 / 10
T = 7 × 0.5736
T = 4.02 s
Therefore, the time taken for the arrow to return is 4.02 s