Answer:
Explanation:
Given two objects are dropped simultaneously
Object A is 10 m higher than object B therefore
Distance covered by object A is given by
is given by

where y=displacement
u=initial velocity
a=acceleration
t=time

for object B

Subtract 1 and 2 we get

i.e. they will travel equal distance in equal time and distance between them remain 10 m until object B hits the ground
Explanation:
Crumple zones are sections in cars that are designed to crumple up when the car encounters a collision. Crumple zones minimize the effect of the force in an automobile collision in two ways. By crumpling, the car is less likely to rebound upon impact, thus minimizing the momentum change and the impulse.
The Box's Acceleration : g sin θ
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
F = force, N
m = mass = kg
a = acceleration due to gravity, m / s²
We plot the forces acting on the block (picture attached) according to the y-axis and the x-axis.
Because the motion of the block is in the same direction as the x-axis, ignoring the friction force with the inclined plane, then

research the different time zone around the world, and characteristics of each
Answer:
a) L = 3.29 10⁻⁴ H, b)U = 5.33 10⁻² J
Explanation:
a) The inductance is a solenoid this given carrier
L =
The magnetic field inside the solenoid is
B = μ₀
hence the magnetic flux
Ф_B = B. A = μ₀
we substitute in the expression of inductance
L = N² μ₀ A /l
let's find the area of each turn
A = π r²
A = π 0.02²
A = 1.2566 10⁻³ m²
let's calculate
L = 250² 4π 10⁻⁷ 1.2566 10⁻² / 0.3
L = 3.29 10⁻⁴ H
b) The stored energy is
U = ½ L i²
let's calculate
U = ½ 3.29 10⁻⁴ 18²
U = 5.33 10⁻² J