Answer:
The answer is
A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
Explanation:
The question is incomplete, here is a complete question with full options
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.
A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.
C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.
D. the high density of the caulk impedes its flow through the small opening.
Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze
Answer:
A. The closest point in the Moon's orbit to Earth
Explanation:
The perigee is defined as the closest point in the orbit of an object (such as a satellite) from the centre of the Earth. In this case, the Earth's satellite is the Moon, so the perigee is defined as the closest point in the Moon's orbit to Earth. so option A is the correct one.
Let's see instead the names of the other options:
B. The farthest point in the Moon's orbit to Earth --> this point is called apogee
C. The closest point in Earth's orbit of the Sun --> this point is called perihelion
D. The Sun's orbit that is closest to the Moon --> this point has no specific name
(a) The minimum force F he must exert to get the block moving is 38.9 N.
(b) The acceleration of the block is 0.79 m/s².
<h3>
Minimum force to be applied </h3>
The minimum force F he must exert to get the block moving is calculated as follows;
Fcosθ = μ(s)Fₙ
Fcosθ = μ(s)mg
where;
- μ(s) is coefficient of static friction
- m is mass of the block
- g is acceleration due to gravity
F = [0.1(36)(9.8)] / [(cos(25)]
F = 38.9 N
<h3>Acceleration of the block</h3>
F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32
a = F(net)/m
a = 28.32/36
a = 0.79 m/s²
Thus, the minimum force F he must exert to get the block moving is 38.9 N.
The acceleration of the block is 0.79 m/s².
Learn more about minimum force here: brainly.com/question/14353320
#SPJ1

Hi pupil here's your answer ::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Action and Reaction do not act on the same body !! If they acted on the same body, the resultant force will be zero and their could be never accelerated motion.
If both the forces acted on the same body, then if they are equal to opposite direction the object will remain stationary. If on of the forces is greater than other the object will move in the direction of greater force.
If both acted in the same direction there would be an accelrated motion.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps . . . . .