1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
15

Ian has a mass of 58.0 kg. what i the weight

Physics
1 answer:
nekit [7.7K]3 years ago
6 0

Answer:

568.4N

Explanation:

weight  =58 x gravity

            =58x9.8

             =568.4N

You might be interested in
La resultante de dos fuerzas perpendiculares aplicadas a un mismo cuerpo es 11.18 N y el módulo de una de ellas es de 10 N. ¿Cuá
Dmitrij [34]

Answer:

English?

Explanation:

3 0
3 years ago
Explain whether a particle moving in a straight line with constant speed does or does not have an acceleration. b) Explain wheth
Lelechka [254]

Answer:

A: No because it is nor changing speed or direction

B: Yes because it changes direction even though the speed is constant

Please Give Brainliest

5 0
2 years ago
Instead of moving back and forth, a conical pendulum moves in a circle at constant speed as its string traces out a cone (see fi
tigry1 [53]

Answer:

a

The  radial acceleration is  a_c  = 0.9574 m/s^2

b

The horizontal Tension is  T_x  = 0.3294 i  \ N

The vertical Tension is  T_y  =3.3712 j   \ N

Explanation:

The diagram illustrating this is shown on the first uploaded

From the question we are told that

   The length of the string is  L =  10.7 \ cm  =  0.107 \ m

     The mass of the bob is  m = 0.344 \  kg

     The angle made  by the string is  \theta  =  5.58^o

The centripetal force acting on the bob is mathematically represented as

         F  =  \frac{mv^2}{r}

Now From the diagram we see that this force is equivalent to

     F  =  Tsin \theta where T is the tension on the rope  and v is the linear velocity  

     So

          Tsin \theta  =   \frac{mv^2}{r}

Now the downward normal force acting on the bob is  mathematically represented as

          Tcos \theta = mg

So

       \frac{Tsin \ttheta }{Tcos \theta }  =  \frac{\frac{mv^2}{r} }{mg}

=>    tan \theta  =  \frac{v^2}{rg}

=>   g tan \theta  = \frac{v^2}{r}

The centripetal acceleration which the same as the radial acceleration  of the bob is mathematically represented as

      a_c  =  \frac{v^2}{r}

=>  a_c  = gtan \theta

substituting values

     a_c  =  9.8  *  tan (5.58)

     a_c  = 0.9574 m/s^2

The horizontal component is mathematically represented as

     T_x  = Tsin \theta = ma_c

substituting value

   T_x  = 0.344 *  0.9574

    T_x  = 0.3294 \ N

The vertical component of  tension is  

    T_y  =  T \ cos \theta  = mg

substituting value

     T_ y  =  0.344 * 9.8

      T_ y  = 3.2712 \ N

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is  

         

       T  = T_x i  + T_y  j

substituting value  

      T  = [(0.3294) i  + (3.3712)j ] \  N

         

3 0
3 years ago
Bright white shadings on infrared images indicate cloud tops that have relatively ________ temperatures
Maru [420]
Infrared is created by detecting the produced radiation coming off of clouds. The temperature of the cloud will define the wavelength of radiation produced from the cloud. The benefit of the infrared imagery is that can be used day and night to conclude the temperature of the cloud tops and earth surface structures and to get the general idea of how clouds are. Based on the general guidelines to define cloud features, if the cloud is bright white on infrared then it is a high cloud or has a cloud top that is developed high into the troposphere. In this way infrared images actually display patterns of temperature on a gray scale such that at one extreme dark gray is warm and at the other extreme bright white is cold. A color scale is used to portray temperature and some improved infrared images show two or more gray scale sequences. High cold clouds are brighter white than low warm clouds.
7 0
3 years ago
One end of a horizontal spring with force constant 130.0 Ni'm is attached to a vertical wall. A 4.00-kg block sitting on the flo
tekilochka [14]

Answer:

Explanation:

When the spring is compressed by .80 m , restoring force by spring on block

= 130 x .80

= 104 N , acting away from wall

External force = 82 N , acting towards wall

Force of friction acting towards wall = μmg

= .4 x 4 x 9.8

= 15.68 N

Net force away from wall

= 104 -15.68 - 82

= 6.32 N

Acceleration

= 6.32 / 4

= 1.58 m / s²

It will be away from wall

Energy released by compressed spring = 1/2 k x²

= .5 x 130 x .8²

= 41.6 J

Energy lost in friction

= μmg x  .8

= .4 x 4 x 9.8 x .8

= 12.544 J

Energy available to block

= 41.6 - 12.544 J

= 29 J

Kinetic energy of block = 29

1/2 x 4 x v² = 29

v = 3.8 m / s

This will b speed of block as soon as spring relaxes. (x = 0 )

4 0
3 years ago
Other questions:
  • What is the difference between speed and velocity? A. Velocity takes acceleration into account, while speed does not. B. Speed t
    9·1 answer
  • I need help finding moment
    14·1 answer
  • Please help me these are overdue for me!
    5·1 answer
  • 1. Explain what dumping is, giving some examples. Does dumping raise any moral issues? What are they? What would an ethical rela
    7·1 answer
  • Why do thunderstorm occur in the summer month in the after noon
    12·1 answer
  • A ray diagram for a refracted light ray is shown.
    12·1 answer
  • Which point refers to the epicenter of an earthquake?
    8·2 answers
  • 5 ways in which friction can be useful
    15·2 answers
  • Which is most likey to contain brackish water?
    12·2 answers
  • Explain how geothermal energy and tidal energy can be used effectively?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!