Bohr's model is different from Rutherford's model by Bohr's model has 150 words , fundamental principles. also Rutherford's model does not have 150 words and fundamental principles. <span />
Answer:
Iron (Fe)
Explanation:
The number of electrons (-) is usually the same as the number of protons (+) in the atom of the element (unless it is an ion).
The element described has 26 electrons, so we can assume that it has 26 protons as well. The number of protons in an atom is the atomic number of element that the atom is.
Element 26 on the PTE is Iron (Fe), which does rust (oxidation) in air and water.
Answer:
Option A, The pH of the solution is 2.7 and the solution is acidic
Explanation:
As we know,
pH = - log [H3O+]
Substituting the given values, we get
pH = - log [2.1 x 10-3 M]
pH = - (-2.678)
pH = 2.678 or 2.7
The solution is acidic as pH value is less than 7
Hence, option A is correct
Answer:
Explanation:
- For the balanced reaction:
<em>4Fe(s) + 3O₂(g) → 2Fe₂O₃(s).</em>
It is clear that 4 mol of Fe react with 3 mol of O₂ to produce 2 mol of Fe₂O₃.
- Firstly, we need to calculate the no. of moles of 35.8 grams of Fe metal:
no. of moles of Fe = mass/molar mass = (35.8 g)/(55.845 g/mol) = 0.64 mol.
- Now, we can find the no. of moles of O₂ is needed to react with the proposed amount of Fe:
<em><u>Using cross multiplication:</u></em>
4 mol of Fe is needed to react with → 3 mol of O₂, from stichiometry.
0.64 mol of Fe is needed to react with → ??? mol of O₂.
∴ The no. of moles of O₂ needed = (3 mol)(0.64 mol)/(4 mol) = 0.48 mol.
- Finally, we can get the volume of oxygen using the information:
<em>It is known that 1 mole of any gas occupies 22.4 L at standard P and T (STP).</em>
<em></em>
<em><u>Using cross multiplication:</u></em>
1 mol of O₂ occupies → 22.4 L, at STP conditions.
0.48 mol of O₂ occupies → ??? L.
∴ The no. of liters of O₂ = (0.48 mol)(22.4 L)/(1 mol) = 10.752 L.