And what are the compounds?
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Answer: D. CYTOKINESIS
Explanation:
Mitosis<em> </em>ends<em> with telophase, or the stage at which the chromosomes reach the poles. ... Telophase is followed by </em>CYTOKINESIS<em>, or the division of the cytoplasm into two daughter </em><em>cells.</em>
ΔSsys and ΔSsurr both have values larger than 0.
<h3>Entropy Change: What Is It?</h3>
- Entropy change is a phenomena that measures the evolution of randomness or disorder in a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work.
- More unpredictability in a thermodynamic system indicates high entropy.
- Heat transport (delta Q) divided by temperature equals the change in entropy (delta S).
<h3>What causes variations in entropy?</h3>
- When a substance is divided into several pieces, entropy rises.
- Because the solute particles are split apart when a solution is generated, the dissolving process increases entropy.
- As the temperature rises, entropy increases.
learn more about entropy change here
brainly.com/question/6364271
#SPJ4