Answer:
Because CLEARLY, each mole of glucose, C6H12O6 contains 6⋅mol oxygen atoms.
Voltmeter is the device that is used to measure the potential difference across the battery.
<h2>What are the usage of voltmeter?</h2><h3 /><h3>Usage of Voltmeter</h3>
Voltmeter is an instrument that measures voltages of both direct and alternating electric current. On a scale of voltmeter usually graduated in volts, millivolts (0.001 volt), or kilovolts (1,000 volts).
Voltmeter is connected in parallel form. It has a high resistance so that it takes negligible current from the circuit so we can conclude that Voltmeter is the device that is used to measure the potential difference across the battery.
Explanation:
The given data is as follows.
Pressure (P) = 760 torr = 1 atm
Volume (V) =
= 0.720 L
Temperature (T) =
= (25 + 273) K = 298 K
Using ideal gas equation, we will calculate the number of moles as follows.
PV = nRT
Total atoms present (n) =
=
= 0.0294 mol
Let us assume that there are x mol of Ar and y mol of Xe.
Hence, total number of moles will be as follows.
x + y = 0.0294
Also, 40x + 131y = 2.966
x = 0.0097 mol
y = (0.0294 - 0.0097)
= 0.0197 mol
Therefore, mole fraction will be calculated as follows.
Mol fraction of Xe =
= 
= 0.67
Therefore, the mole fraction of Xe is 0.67.
Answer:
The IUPAC structure only shows bond pairs and lone pairs. In the flouromethane structure above, there is only one bond pair and three lone pairs of electrons. Therefore there is one electron remaining, but since it doesn't not make up a pair, it is ignored in the structure but theoretically it is present.

I'd say it's single replacement/displacement