Mass/volume = density
mass = (440 mg)*(1g)/(1000mg) = 0.440g
volume = (1000cm)(1000cm)(t)
where t = thickness
density = 2.70 g/cm^3 = (0.440g)/((1000cm)(1000cm)(t))
multiply both sides by 't' and divide both sides by (2.70g/cm^3)
t = (0.440) / ((1000cm)(1000cm)(2.70)) = 1.629x10^-7 cm
t = (1.629 x 10^-7 cm)*(1000000 micrometers)/(1 cm) = 0.1629 micrometers
Answer is t = 0.1629 micrometers
Answer:
447,25k
Explanation:
According to the ideal gas law

Where:
P: is the pressure of the gas in atmospheres.
V: is the volume of the gas in liters.
n: number of moles of the gas
R: ideal gas constant
T: absolute temperature of the gas in kelvin
now using:

Answer:
Plutonium is the second transuranium element of the actinide series.
Answer:
³⁸₂₀Ca.
Explanation:
³⁸₁₉K –> __ + ⁰₋₁β
Let ʸₓA represent the unknown.
Thus the equation above can be written as:
³⁸₁₉K –> ʸₓA + ⁰₋₁β
Thus, we can obtain the value of y an x as follow:
38 = y + 0
y = 38
19 = x + (–1)
19 = x – 1
Collect like terms
19 + 1 = x
x = 20
Thus,
ʸₓA => ³⁸₂₀A => ³⁸₂₀Ca
Therefore, the equation is:
³⁸₁₉K –> ³⁸₂₀Ca + ⁰₋₁β
Answer:
223.6539
Explanation:
1 mole is equal to 1 moles KCl, or 74.5513 grams