Answer:
A: element B
B: element A
C: element B
D: element A
Explanation:
decrease in size leads increase in electronegativity because the smaller the size, the closer the shell is to the nucleus. Also, atomic radius decreases to the right and up on the periodic table. Atomic radius increases to the left and down a period. I hope this helps!
Answer: There are five significant figures in 865,010.
Explanation:
When a degree of accuracy is stated by each digit present in a mathematical figure then it is called a significant figure.
Rules for counting significant figures is as follows.
- Any non-zero digits and zeros present between a non-zero figure are counted. For example, 3580009 has seven significant figures.
- Trailing zeros are counted in a non-zero figure. For example, 0.00250 has three significant figures.
- Leading zeros are not counted. For example, 0.0025 has two significant figures.
So, in the given figure 865010 has five significant figures and the trailing zero will not be counted.
Thus, we can conclude that there are five significant figures in 865,010.
Pure magnesium's formula would just be Mg because all elements except for 7 nonmetals are just left alone when they are by themselves in a formula. The 7 diatomic elements( means they have to have two of them without another element attached to it aka. a subscript two after it when it's by itself) are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. An easy way to remember the diatomic seven is that when looking at a periodic table if you trace over them from nitrogen over to fluorine and down to iodine all of those elements are diatomic + hydrogen.
And your unbalanced and balanced equations are correct.
(sorry I went on a tangent with the diatomic rules hopefully it will help you in the future though)