I believe it’s stay in motion if it’s not acted on by an unbalanced force
Answer:
False
Explanation:
The formula of force that exists between two charges is expressed as;
F = kq1q2/r²
If two charges separated by one meter exert a 9 N force on each other, the;
9 = kq1q2/1²
9 = kq1q2 ..... 1
If the charges are pushed to a 3 meter separation, then;
F = kq1q2/3²
F = kq1q2/9 .... 2
Divide both equations;
9/F = (kq1q2)/ kq1q2/9
9/F = kq1q2 * 9/ kq1q2
9/F = 9
F = 9/9
F = 1N
Hence if the charges are pushed to a 3 meter separation, then the force on EACH charge will be 1N. Hence the answer is False
a simple lifting machine consisting of a rope which unwinds from a wheel on to a cylindrical drum or shaft joined to the wheel to provide mechanical advantage. reeeeeeeeeeeeeeeeeeeeeeeeee
Data Analysis and Conclusion
Answer:
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state toward a lower utility state. The physiological system may return toward the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system's resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective.
Explanation: