Answer:
A change of one degree Celsius = a change of one Kelvin, but a Celsius temperature is never equal to a Kelvin temperature. A change of 1 degree Fahrenheit equals a change of 5/9 = 0.56 degrees Celsius. To convert a Fahrenheit temperature to Celsius, subtract 32 and multiply by 5/9.
Explanation:
Answer:
The pressure is 
Explanation:
From the question we are told that
The gauge pressure at the mouth is 
The radius of the column is 
The speed of the liquid outside the body is 
The area of the column is 
The area inside the mouth 
Generally according to continuity equation

=> 
=> 
=> 
So

=> 
=> 
substituting values


Now the height of inside the mouth is 
Now the height of the column is 
Generally according to Bernoulli's equation
![p_1 = [\frac{1}{2} \rho v_2^2 + h_2 \rho g +p_2] -[\frac{1}{2} \rho * v_1^2 + h_1 \rho g ]](https://tex.z-dn.net/?f=p_1%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%20%5Crho%20v_2%5E2%20%2B%20h_2%20%5Crho%20g%20%2Bp_2%5D%20-%5B%5Cfrac%7B1%7D%7B2%7D%20%5Crho%20%2A%20v_1%5E2%20%2B%20h_1%20%5Crho%20g%20%5D)
Now
which is the density of water
is the gauge pressure of the atmosphere which is zero
So
![p_1 = [(0.5 * 1000 * (3.1)^2) +(0.008 * 1000 * 9.8) + 0]-](https://tex.z-dn.net/?f=p_1%20%3D%20%20%5B%280.5%20%2A%201000%20%2A%20%283.1%29%5E2%29%20%2B%280.008%20%2A%201000%20%2A%209.8%29%20%2B%200%5D-)

Answer:
It should be option B polarization
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>