Answer:
The right response will be "450 volts".
Explanation:
The given values are:
R1 = 4.00 cm
R2 = 6.00 cm
q1 = +6.00 nC
q2 = −9.00 nC
As we know,
The potential difference between the two shell's difference will be:
⇒ ![\Delta V=K[(\frac{q1}{R1}+\frac{q2}{R2})-(\frac{q1}{R1} +(\frac{q2}{R2}))]](https://tex.z-dn.net/?f=%5CDelta%20V%3DK%5B%28%5Cfrac%7Bq1%7D%7BR1%7D%2B%5Cfrac%7Bq2%7D%7BR2%7D%29-%28%5Cfrac%7Bq1%7D%7BR1%7D%20%2B%28%5Cfrac%7Bq2%7D%7BR2%7D%29%29%5D)
![=K[\frac{q1}{R2}-\frac{q1}{R1} ]](https://tex.z-dn.net/?f=%3DK%5B%5Cfrac%7Bq1%7D%7BR2%7D-%5Cfrac%7Bq1%7D%7BR1%7D%20%5D)
On substituting the values, we get
Δ 
According to the second law of thermodynamics,
the answer is
<span>4. The entropy of the universe is increasing. </span>
The black means that it is a great emitter/absorber of the electromagnetic spectrum. The electromagnetic radiation is reflected of the white and absorbed nurture black meaning that the temperature of the black tarmac increases to that greater the the white
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>
Sodium (Na) is a Alkali metal so that's the answer