Answer:
67.4 % of C₉H₈O₄
Explanation:
To make titrations problems we know, that in the endpoint:
mmoles of acid = mmoles of base
mmoles = M . volume so:
mmoles of acid = 20.52 mL . 0.1121 M
mmoles of acid = mg of acid / PM (mg /mmoles)
Let's determine the PM of aspirin:
12.017 g/m . 9 + 1.00078 g/m . 8 + 15.9994 g/m . 4 = 180.1568 mg/mmol
mass (mg) = (20.52 mL . 0.1121 M) . 180.1568 mg/mmol
mass (mg) = 414.4 mg
We convert the mass to g → 414.4 mg . 1g / 1000mg = 0.4144 g
We determine the % → (0.4144 g / 0.615 g) . 100 = 67.4 %
Answer: The correct option is heterogeneous mixture whose components are attracted differently to a magnet.
Explanation: There are two types of mixtures:
1) Homogeneous mixtures: In these mixtures, the particles are uniformly distributed throughout the mixture. These particles cannot be separated.
2) Heterogeneous Mixtures: These are the mixtures where the particles are visible separated and are not-uniformly distributed. These particles can be separated easily.
If magnet is used to separate the components of a mixture, the heterogeneous mixtures will only get separated.
To separate the components by a magnet, the components of a mixture should attract the magnet differently. One component should attract the magnet and another should not. Hence, they can be easily separated.
Answer:
Oxide of M is
and sulfate of 
Explanation:
0.303 L of molecular hydrogen gas measured at 17°C and 741 mmHg.
Let moles of hydrogen gas be n.
Temperature of the gas ,T= 17°C =290 K
Pressure of the gas ,P= 741 mmHg= 0.9633 atm
Volume occupied by gas , V = 0.303 L
Using an ideal gas equation:


Moles of hydrogen gas produced = 0.01225 mol

Moles of metal =
So, 8.3333 mol of metal M gives 0.01225 mol of hydrogen gas.

x = 2.9 ≈ 3


Formulas for the oxide and sulfate of M will be:
Oxide of M is
and sulfate of
.
Answer:
b. colloid
Explanation:
Colloids are solutions that are going to have a solute and a solvent, but the size of the particles are bigger than in a solution that is clear. that is the reason that it looks blurred because the particles are bigger.
In the other hand, these particles of the solute are big, but not so big and heavy as in a suspension, so they are not going to precipitate in the bottom.
The movement of the particles are called Brownian movement, and they are the responsible to avoid to settle down at the bottom of the recipient.
Answer:
naoh is called sodium hydroxide,
Explanation:
hope this helps