Answer:
K.E = 5.53 eV = 8.85 x 10⁻¹⁹ J
Explanation:
First we calculate the energy of photon:
E = hc/λ
where,
E = Energy of Photon = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength = 120 nm = 1.2 x 10⁻⁷ m
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(1.2 x 10⁻⁷ m)
E = (16.565 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)
E = 10.35 eV
Now, from Einstein's Photoelectric equation we know that:
Energy of Photon = Work Function + K.E of Electron
10.35 eV = 4.82 eV + K.E
K.E = 10.35 eV - 4.82 eV
<u>K.E = 5.53 eV = 8.85 x 10⁻¹⁹ J</u>
Answer:
The mass of the volleyball is 0.32 kg.
Explanation:
Given that,
Initial speed of the ball, u = 4.2 m/s
Final speed of the ball, v = -24 m/s
The impulse delivered to the ball by the player is -9.3 kg-m/s.
To find,
Mass of the volleyball.
Solution,
The change in momentum of the volleyball is equal to the impulse delivered to the ball. It is given by :



m = 0.32 kg
So, the mass of the volleyball is 0.32 kg.
Answer:
b. 5 N
Explanation:
Each book weighs 5 N. Therefore, five books weigh 25 N. The friction force is:
Ff = Fn μ
Ff = (25 N) (0.2)
Ff = 5 N
Given:
A cylindrical container closed of both end has a radius of 7cm and height of 6cm.
Explanation:
A.) Find the total surface area of the container.
- A = 2πrh + 2πr²
- A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
- A = 263.76 + 307.72
- A = 571.48
B.) Find the volume of the container.
- V = πr²h
- V = (3.14)(7×7)(6)
- V = 923.16
Not sure huhuness.
#CarryOnLearning
Answer:
1.6 m/s²
Explanation:
Weight equals mass times acceleration due to gravity.
F = mg
14.4 N = (9 kg) g
g = 1.6 m/s²