Answer:
t = 5.19 s
Explanation:
We have,
Height of the cliff is 132 m
It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

So, it will take 5.19 seconds to fall to the ground.
The answer is A vaporization
While Jane is running has a kinetic energy, which is Ek = 1/2*m*v^2 where m is mass and v is velocity When she grabs a vine, she is going to change the kinetic energy to potential energy.
We know that potential energy is given by Ep = m*g*h where m is mass, g is gravity constant and h is height
So while running the kinetic energy is Ek = 1/2 * m * 5.2^2 = 13.52*m
Then all that energy is used to swing upward and gain potential energy
Ep = m*g*h = Ek = 13.52*m
m*9.8*h = 13.52*m
h = 13.52/9.8 = 1.38 meters
So Jane will swing 1.38 meters upward
The total mechanical energy of the notebook is <u><em>19J</em></u>.
Mechanical energy is the sum of potential energy and kinetic energy. It has no kinetic energy, because it's not moving. So its potential energy is all the mechanical energy it has.
Meter - m
Kilometer - km
Hectometer- hm
Dekameter - dam
Decimeter - dm
Centimeter - cm
Millimeter - mm
Micrometer - μm