Answer:
specific volume = 1.025 m³/kg
Explanation:
given data
total mass m1 +m2 = 80 kg
specific volume = 0.8 m³/kg
occupies volume v1 = 40 m³
other gas specific volume = 1.4 m³
to find out
How much volume is occupied by the second gas and what is the specific volume of the mixture
solution
we know that density is reciprocal of specific volume and here gas is not interacting
so total specific volume is assume so ratio is total volume to total mass
and
specific volume = 
here ρ is density
so ρ1 =
= 1.25 kg/m³
and ρ2 =
= 0.714 kg/m³
and
so m1 = ρ1v1 = 1.25 × 40 = 50 kg
and m2 = 80 - 50 = 30 kg
so
v2 = 
v2 =
= 42 m³
so volume occupied by second das = 42 m³
and
specific volume of mixture will be
specific volume of mixture = 
specific volume = 
specific volume = 1.025 m³/kg
Answer:
GoPro cameras have a fixed 170-degree lens. This allows for wide-angle photos and videos. Basically, at 170-degrees, it will capture almost everything in front of the camera. To get absolutely everything, it would need another 10-degrees
Explanation:
Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa
Answer:
wow very grammar so correct