Answer:
The given grammar is :
S = T V ;
V = C X
X = , V | ε
T = float | double
C = z | w
1.
Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.
From the given grammar,
Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.
No other variables generate variable X or ε.
So, only variable X is nullable.
2.
First of nullable variable X is First (X ) = , and ε (epsilon).
L.H.S.
The first of other varibles are :
First (S) = {float, double }
First (T) = {float, double }
First (V) = {z, w}
First (C) = {z, w}
R.H.S.
First (T V ; ) = {float, double }
First ( C X ) = {z, w}
First (, V) = ,
First ( ε ) = ε
First (float) = float
First (double) = double
First (z) = z
First (w) = w
Explanation:
Hoiu-10,4000 mm.
<h3>
Is positive pressure good for PC?</h3>
- A balanced configuration is the most efficient way to cool your pc although it should tend towards a slight positive pressure if you can help it.
- Tip: As much as it might seem important, the concept of heat rising doesn't have too much of an effect.
To learn more about it, refer
to https://brainly.in/question/413163
#SPJ4
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
Given,
Temperature;
T = 393;;K
Convert to Celcius;
T = (393-273) degrees
T = 120°C
Using Table A-4 (Saturated water - Temperature table), at T = 120 C;
vf = 0.001060 m³/kg
vg = 0.89133 m³/kg
Quality is given as;
75% = 0.75
Specific volume is given as;
v = vf + x (vg - vf) = 0.001060 + 0.75(0.89133 _ 0.001060)
v= 0.66876 m³/kg
We know;
v = V/m
0.66876 = 100/m
m = 149.53 kg
Click and drag it down to the bottom bro