The electric potential energy of the electron depends on the potential difference applied between the two ends of the cable. Indeed, the electric potential energy of a charge is given by

where q is the magnitude of the charge, while

is the potential difference applied. So, U depends on

.
Answer:
B. holding a coffee mug
Explanation:
Something must move a distance for work to be done.
Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
I think the correct answer from the choices would be that metals donate electrons to nonmetals. Ionic bonding involves transfer of valence electrons. The metal looses its valence electrons which makes it a cation while the nonmetal accepts these electrons.