Answer:
The mass of KClO₃ that will absorb the same heat as 5 g of KCl is 3.424 g
Explanation:
Here we have
Heat of solution of KClO₃ = + 41.38 kJ/mol.
Heat of solution of KCl (+17.24 kJ/mol)
Therefore, 1 mole of KCl absorbs +17.24 kJ during dissolution
Molar mass of KCl = 74.5513 g/mol
Molar mass of KClO₃ = 122.55 g/mol
74.5513 g of KCl absorbs +17.24 kJ during dissolution, therefore, 5 g will absorb

Therefore the amount of KClO₃ to be dissolved to absorb 1.156 kJ of energy is given by
122.55 g of KClO₃ absorbs + 41.38 kJ, therefore,

Therefore the mass of KClO₃ that will absorb the same heat as 5 g of KCl = 3.424 g.
The answer is so you do not overheat
Answer:
A.outer-shell electrons of one atom are transferred to the inner electron shells of another atom.
Explanation:
In covalent chemical bond, outer shell share pair of electrons to fill both atoms outer shell. Covalent bond can be polar and non-polar. Hydrogen and carbon bonding is example of non-polar bonds; while hydrogen bonding with chlorine is polar covalent bond example
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.