Answer:
t = 4.0 min
Explanation:
given data:
diameter of rod = 2 cm
T_1 = 100 degree celcius
Air stream temperature = 20 degree celcius
heat transfer coefficient = 200 W/m2. K
WE KNOW THAT
copper thermal conductivity = k = 401 W/m °C
copper specific heat Cp = 385 J/kg.°C
density of copper = 8933 kg/m3
charateristic length is given as Lc




Biot number is given as 

Bi = 0.0025
As Bi is greater than 0.1 therefore lumped system analysis is applicable
so we have
............1
where b is given as



b = 0.01163 s^{-1}
putting value in equation 1

solving for t we get
t = 4.0 min
1) Size of the image: 2 cm
In order to calculate the size of the image, we can use the following proportion:

where
p = 80 m is the distance of the tree from the pinhole
q = 20 cm = 0.2 m is the distance of the image from the pinhole
= 8 m is the heigth of the object
is the height of the image
By re-arranging the proportion, we find

2) Magnification: 0.0025
The magnification of a camera is given by the ratio between the size of the image and the size of the real object:

so, in this problem we have

<span>B. It stays the same</span>
Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s
Answer:
12.31 m/s
Explanation:
If we recall from the previous knowledge we had about speed,
we will know that:
speed = distance/ time.
As such:
The average speed of the rider bicycle is
average speed = total distance/ total time
Mathematically, it can be computed as:




