Ignoring air resistance, the bullet's horizontal velocity is constant:

In 1.3 seconds, we can expect it to travel

Explanation:
It is given that,
Total mass is 70 kg
The truck exerts a constant force of 20 N.
Then the net force is given by :
F = ma
a is acceleration of rider

Initial velocity of rider is 0. So, using equation of kinematics to find the final velocity as :

Since, 1 m/s = 2.23 mph
4.28 m/s = 9.57 mph
So, the speed of the rider is 4.28 m/s or 9.57 mph.
Balance tubes by spacing them equally around the centrifuge and Always balance tubes with other tubes containing a same volume of liquid are right.
If you don't space them out equally, you will have a lot of broken glass to clean up...trust me. The same thing can happen if you don't have equal amounts of liquid in each tube, but it doesn't have to be exactly the same in every one.
Answer:
the answer the correct one is c
Explanation:
Electric charges of different signs attract and those of the same sign repel. In addition, there are two types of insulating bodies, where the loads are fixed (immobile) and metallic (with mobile loads.
Let's analyze the situation presented
* A rod with positive approaches and the sphere is attracted, so the charge on the sphere is negative
* A rod with a negative charge approaches and the sphere is attracted, therefore the charge of the sphere must be positive.
For this to happen, the sphere must be unloaded and the charge that creates the phenomenon are induced charges because the mobile charges of the same sign as the sphere are repelled.
when checking the answer the correct one is c
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.