1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
2 years ago
6

How many moles of water vapor are formed. when 10 litres of butane gas c4h10 is burned in oxygen at STP ​

Chemistry
1 answer:
NeX [460]2 years ago
4 0

Answer:

gto

Explanation:

You might be interested in
In which of the following are the symbol and name for the ion given correctly?
Naya [18.7K]
The answer you want is a
6 0
3 years ago
If 50 ml of 0.235 M NaCl solution is diluted to 200.0 ml what is the concentration of the diluted solution
Helen [10]

This is a straightforward dilution calculation that can be done using the equation

M_1V_1=M_2V_2

where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.

Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

M_2=\frac{M_1V_1}{V_2}.

Substituting in our values, we get

\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].

So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.

5 0
2 years ago
Fabric is made of ___​
GuDViN [60]

Answer:

Fabric is made of cotton.

Explanation:

Hope that helps :)

6 0
3 years ago
Read 2 more answers
For the reversible, one-step reaction A+B&lt;----&gt;C+D, the forward rate constant is 52.4 /mol*h and the rate constant for the
Fantom [35]

Answer:

—-—1———————-s

7 0
3 years ago
Be sure to answer all parts. one of the most important industrial sources of ethanol is the reaction of steam with ethene derive
lions [1.4K]

Answer: 2.17x10⁻³ atm

Explanation:

First, we must write the balanced chemical equation for the process:

C₂H₄(g) + H₂O(g) ⇌ C₂H₅OH(g)

The chemical reactions that occur in a closed container can reach a state of <u>chemical equilibrium</u> that is characterized because the concentrations of the reactants and products remain constant over time. The <u>equilibrium constant</u> of a chemical reaction is the value of its reaction quotient in chemical equilibrium.

The equilibrium constant (K) is expressed as <u>the ratio between the molar concentrations (mol/L) of reactants and products.</u> Its value in a chemical reaction depends on the temperature, so it must always be specified.

<u>We will use the the equilibrium constant Kc of the reaction to calculate partial pressure of ethene.</u> The constant Kc for the above reaction is,

Kc = \frac{[C_{2} H_{5}OH]}{[H_{2}O][C_{2} H_{4}]}

According to the law of ideal gases,  

PV = nRT  

where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the gas constant (0.082057 atm L / mol K) .

We can use the ideal gas law to determine the molar concentrations ([x] = n / V) from the gas pressures of ethanol and water, assuming that all gases involved behave as ideal gases. In this way,

PV = nRT → P = (n/V) RT → P = [x] RT → [x] = P / RT

So,  

[C_{2} H_{5}OH] = \frac{200 atm}{0.082057 \frac{atm L}{mol K} x 600 K } = 4.06 \frac{mol}{L}

[H_{2}O] = \frac{400 atm}{0.082057 \frac{atm L}{mol K} x 600 K } = 8.12 \frac{mol}{L}

So, the molar concentration of ethene (C₂H₄) will be,

[C_{2} H_{4}] = \frac{[C_{2} H_{5}OH]}{[H_{2}O] x Kc} = \frac{4.06 \frac{mol}{L} }{8.12 \frac{mol}{L}x9.00 x 10^{3} \frac{L}{mol} } = 5.56 x 10^{-5}\frac{mol}{L}

Then, according to the law of ideal gases,

P_{C_{2} H_{4}} = [C_{2} H_{4}]RT = 5.56 x 10^{-5} \frac{mol}{L}  x 0.082057 \frac{atm L}{mol K} x 600 K = 2.17x10^{-3} atm

So, when the partial pressure of ethanol is 200 atm and the partial pressure of water is 400 atm, the partial pressure of ethene at 600 K is 2.17x10⁻³ atm.

7 0
3 years ago
Other questions:
  • explain placed a dented table -tennis ball in boiling water is one way to remove the dent in the ball assume the ball has no hol
    13·1 answer
  • Which family has the highest ionization energy
    8·1 answer
  • Food in the stomach is broken down by powerful acids and turned into?
    11·2 answers
  • The initial temperature of three moles of oxygen gas is 32.5°C, and its pressure is 6.60 atm. (a) What will its final temperatur
    6·1 answer
  • A gold-colored ring has a mass of 17.5 grams and a volume of 0.82 mL. What is the density of this ring?
    12·1 answer
  • I NEED HELP ASAP!!!!!!<br> Which energy profile best shows that the delta Hf of H2S is -20.6 kJ/mol?
    6·1 answer
  • Determine the oxidation number of chlorine in CI2 with the steps
    5·1 answer
  • Can someone help with this problem
    13·1 answer
  • If a negatively charged ion is more concentrated outside the cell, the forces required to balance the chemical gradient would be
    8·1 answer
  • A container with a volume 2. 0 L is filled with a gas at a pressure of 1. 5 atm. By decreasing the volume of the container to 1.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!