The balanced equation for the above reaction is as follows;
2S + 3O₂ --> 2SO₃
Stoichiometry of O₂ to SO₃ is 3:2
O₂ is the limiting reactant and S is provided in excess. since O₂ is the limiting reactant, the whole amount is consumed in the reaction and amount of product formed depends on amount of limiting reactant present.
Number of O₂ moles reacted- 4 g / 32 g/mol = 0.125 mol
3 mol of O₂ forms 2 mol of SO₃
therefore when 0.125 mol of O₂ reacts number of SO₃ moles - 2/3 x 0.125 mol
Number of SO₃ moles formed - 0.0833 mol
Answer is 4) 0.08 mol
B) 2
You would first balance GO4 by adding a coefficient of 3 in front of DnGO4 in the reactants. Then you’d balance the 3DnGO4 by adding a coefficient of 3 in front of Dn in the products. Finally you’d balance Eg by adding a coefficient of 2 in front of Eg to balance with the Eg2(GO4)3 in the products.
Refer to the attachment for answer.
SOME EXTRA INFORMATION:
Bromo is used for Bromine (Br)
Chloro is used for Chlorine(Cl)
'ene' represents double bond between carbon atoms.
'ol' is used for alcohol
HOPE IT IS USEFUL
The answer is in the attachment below:
Answer:
sodium hexachloroplatinate(IV)- Na2[PtCl6]
dibromobis(ethylenediamine)cobalt(III) bromide- [Co(en)2Br2]Br
pentaamminechlorochromium(III) chloride-[Cr(NH3)5Cl]Cl2
Explanation:
The formulas of the various coordination compounds can be written from their names taking cognisance of the metal oxidation state as shown above. The oxidation state of the metal will determine the number of counter ions present in the coordination compound.
The number ligands are shown by subscripts attached to the ligand symbols. Remember that bidentate ligands such as ethylenediamine bonds to the central metal ion via two donors.