Answer:
1.16atm
Explanation:
We are going to derive the mass of ether from density
mass=density *volume
Also moles=mass/molecular mass
molar mass C2H5OC2H5 =74.12 g/mole
the density of ether is 0.7134 g/ml
mass C2H5OC2H5 = 5.30 ml x 0.7134 g/ml = 3.78 g
moles C2H5OC2H5 =3.78 g x 1 mole/74.12 g = 0.0509 moles
PV = nRT where P=?; n=0.0509 moles; V=6.50L; R=0.0821 Latm/Kmol; T=35ºC +273 = 308K
P = nRT/V = 0.0509)(0.0821)(308)/6.50
P = 0.198 atm (to 3 significant figures (this is the partial pressure of diethyl ether).
TOTAL PRESSURE
P1+p2+p3
= 0.198 atm + 0.750 atm + 0.207 atm =1.1550atm
1.16atm(3 significant figures)
Answer:
120.0 mL.
Explanation:
- As it is known that the no. of millimoles of a solution before dilution is equal to the no. of millimoles after dilution.
We suppose that the initial W% of methanol is 100.0 %
<em>∴ (W%V) before dilution = (W%V) after dilution.</em>
W% before dilution = 100.0 %, V before dilution = 18.0 mL.
W% after dilution = 15.0 %, V after dilution = ??? mL.
<em>∴ V after dilution = (W%V) before dilution/W% after dilution = </em>(100.0 %)(18.0 mL)/(15.0%)<em> = 120.0 mL.</em>
It would be volume.
Volume is not an intensive property because it <em>does</em> change as the amount of substance increases or decreases. The rest of the properties are constant no matter the amount of substance.
I would love to help but it is 3 or is it 3 million?