Answer:
They will hit the ground at the same time.
Explanation:
By ignoring the opposing forces i.e. air resistant, both the heavy and light balls will fall with same acceleration due to gravity (g=9.8 m/s²) and g is independent of mass of the objects. Thus both will hit the ground at the same time.
Answer:
New location at time 3.01 is given by: (7.49, 2.11)
Explanation:
Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:


Therefore, adding these displacements in component form to the original particle's position, we get:
New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)
Answer:
Explanation:
Given
Force 
time interval 
Impulse is given by 
For two significant Figure

Answer:
v (minimum speed) = 2.90 m/sec.

Maximum value of speed will occur at lowest point of vertical circle.
Explanation:
a) What minimum speed is necessary so that there is no tension in the string at the top of the circle but the rock stays in the same circular path?
Using the force balance expression at the top of the circle,
Gravitational Force + Tension force = Centrifugal force

Given that : T = 0
R = length of string = 0.86 m
mass of the spinning rock = 0.75 kg


v (minimum speed) = 2.90 m/sec.
b) what is the maximum speed the rock can have so that the string does not break?
Here the force balance at bottom of circle is represented by the illustration:

Given that:
maximum tension T = 45 N
maximum speed v = ??
mass m = 0.75 kg
∴

c)
At what point in the vertical circle does this maximum value occur?
Maximum value of speed will occur at lowest point of vertical circle.
This is so because at the lowest point; the tension in string will be maximum.
Answer:
i know the questin but i got to try and find it
Explanation: