Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂
A) Temperature does not affect reaction rate
Can you put this in english
Answer:
- <em><u>Option A. </u></em><u><em>2KClO₃ → 2KCl + 3O₂</em></u>
Explanation:
There are five basic general types of chemical reactions:
- Synthesis or combination reaction
- Single replacement reactions
- Double replacement reactions
The given reactions are:
- <u>2KClO₃ → 2KCl + 3O₂</u>
Which is, indeed, a decomposition reaction because the reactant, KClO₃, is a single substance that undergoes a reaction in which it yields two new substances, known as products: KCl and O₂.
- <u>4Na + O₂ → 2Na₂O</u> is a synthesis or combination reaction because two reactants, Na and O₂, combine for the formation of one single new product, Na₂O.
- <u>ZnS + 3 O₂ → 2ZnO + 2SO₂ </u>is a single replacement reaction because oxygen is replacing Zn and S in ZnS to form ZnO and plus SO₂.
- <u>2NaBr + CaF₂ → 2NaF + CaBr₂ </u>is a double replacement reaction because two ions (Br⁻ from NaBr and F⁻ from CaF₂) are exchanging places with other two ions (Na⁺ from NaBr and Ca²⁺ from CaF₂) two form two new ionic compounds (NaF and CaBr₂).
I am assuming you are talking about Neon. The rate of diffusion is directly proportional to the molar mass of the gas. Since neon has a molar mass of 20.18 grams, the gas must have a lower molar mass and must be a gas at 273 Kelvin. There are several elements that fulfill this criteria: Hydrogen, Helium, Oxygen, Nitrogen, and Fluorine.