The object’s resultant angle of motion with the +x-axis after the collision is 47°
<span>From object A:
1) x-momentum is 5.7 × 10^4 kilogram meters/second,
2) y-momentum is 6.2 × 10^4 kilogram meters/second.
Now, we know, tan</span>Ф =

⇒tanФ =

⇒tanФ = 1.088
⇒ Ф =

1.088
= 47.4 ≈ 47
Answer:

Explanation:
The roller coaster begins with maximum kinetic energy and no gravitational potential energy. The gravitational potential energy reaches its maximum when roller coaster is upside down at the top of the circle. The physical model for the roller coaster is constructed by means of the Principle of Energy Conservation:

The minimum velocity is:

Let assume that radio of curvature is measured in meters. Hence:


Required Heat = Q
Q = Mass * specific heat of water * change in temp.
Q = 5g * 1g/cal*degC * 20degC
Q = 100 cal of heat is required
To convert calories to Joules,
1 cal = 4.184 Joules
100cal = 418.4 J of heat is needed
Answer:
90m/s
Explanation:
Given parameters:
Acceleration = 10m/s²
Time of fall = 9s
Unknown:
Final velocity = ?
Solution:
We can assume that the cart falls from rest.
Initial velocity = 0m/s
Using
v = u + gt
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
t is the time
v = 0 + 10 x 9 = 90m/s