Answer:
C) exothermic
Explanation:
The given reaction is exothermic.
N₂ + 3H₂ → 2NH₃ + ENERGY
when energy is released the reaction is exothermic and when energy is written on left side with reactant it means energy is added and reaction is endothermic.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer:
40
Explanation:
Your trying to find out the meters so your going to divide 3920J by 10 and 9.8
3920/10/9.8
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
Answer:
64J of energy must have been released.
Explanation:
Step 1: Data given
One reactant contains 346 J of chemical energy, the other reactant contains 153 J of chemical energy.
The product contains 435 J of chemical energy.
Step 2:
Since the energy is conserved
Sum of energy of Reactants = Energy of Products
Sum of energy of Reactants = 346 J + 153 J = 499 J
The energy of the product = 435 J
435 < 499
This means energy must have been lost as heat.
Step 3: Calculate heat released
499 J - 435 J = 64 J
64J of energy must have been released.
The molar mass of carbon is 12, hydrogen is 1, and
nitrogen is 14, hence the ratio are:
C = 38.65 / 12 = 3.22
H = 16.25 / 1 = 16.25
N = 45.09 / 14 = 3.22
Divide the three by the lowest ratio which is 3.22:
C = 3.22 / 3.22 = 1
H = 16.25 / 3.22 = 5
N = 3.22 / 3.22 = 1
So the empirical formula is:
CHN