Answer: true
Explanation: Electrons orbit the nucleus of an atom the way that planets revolve around the Sun. The electrons are like the planets in the solar system. The sun is like the nucleus in the solar system. The answer to the question is true.
The total number of protons in this atom is 79 because an atomic number of an element is equal to the number of protons. Here, the atomic number is 79 after adding the given electronic configuration.
What are Protons?
Every atom has a proton, a subatomic particle, in its nucleus. The particle possesses an electrical charge that is positive and opposite to the electrons.
What is Atom?
A nucleus plus one or more electrons bound to the nucleus make up an atom. The quantity of protons or electrons in an element's atom determines how different it is from other similar elements. The atomic number of an element, which serves as its primary identification, is the sum of its protons or electrons.
What is Electronic configuration?
The arrangement of electrons in atomic or molecular orbitals within an atom, molecule, or other physical structure is known as the electron configuration.
Hence, the total number of protons in this atom is 79, after adding 2 + 8 + 18 + 32 + 18 + 1.
To know more about Atom, check out:
brainly.com/question/6258301
#SPJ4
<span>pb(no3)2 + 2 nacl → pbcl2 + 2nano3</span>
Answer and Explanation:deposition has been occurring on earth for a very long time. as time goes by, more deposits form layers on the earth, including the remains of animals and plants that would later become fossils, burying the previous deposits in another layer of newer deposits. therefore it follows that layers which are found deeper are older than those found in layers near the surface....
hope it helps u..
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g