Well, one example is that the weight of the rider puts downward force on the motorcycle, which is absorbed by the suspension or shocks or something.
The angular momentum is defined as,

Acording to this text we know for conservation of angular momentum that

Where
is initial momentum
is the final momentum
How there is a difference between the stick mass and the bug mass, we define that
Mass of the bug= m
Mass of the stick=10m
At the point 0 we have that,

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity
vector from the point of reference (O), and ve is the velocity
At the end with the collition we have

Substituting




Applying conservative energy equation we have


Replacing the values and solving

Substituting
l=\frac{13}{0.54(9.8)}

By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
Decay of Schizomycetes waste present in waste water leads to unpleasant smell.
These microorganisms, known as iron and sulfur bacteria, cause hydrogen sulfide to be found in water supplies. They include crenothrix and beggiatoa. Most often found in groundwater supplies, they produce an offensive odor of decaying matter. (I'm not sure)
Hello,
<u>Solution for A:</u>
Force = 3.00N
Mass = 0.50 Kgs
Time = 1.50 Seconds
According to newton's second law of motion;
Force = Mass times Acceleration(a)
3.00 = 0.50 * a
a = 3.00/0.50 = 6.00 m/s^2
We know that acceleration = Velocity / time
So Velocity = time * acceleration = 1.50 * 6 = 9.00 m/s^2
<u>Solution for B:</u>
The net force = 4.00N - 3.00N = 1.00N to the left
Force = 1.00N
Mass = 0.50Kg
Time = 3.00 Seconds
Again; F = MA (Where F is force, M is mass and A is acceleration)
1.00N = 0.5 * A
A = 1/0.5 = 2 m/s^2
Velocity = Acceleration * Time = 2 * 3 = 6 m/s