Answer:
Final vertical velocity = -29m/s
Horizontal distance = 100m
Height = 20.41m
Explanation:
1. The vertical final velocity can be calculated thus: vy = vyo - gt
Where;
vy = vertical velocity (m/s)
vyo = vertical initial velocity (20m/s)
g = acceleration due to gravity (9.8m/s²)
t = time (5s)
Hence, vy = vyo - gt
vy = 20 - (9.8 × 5)
vy = 20 - 49
vy = -29m/s
2. x = V0 x t
Where;
x = horizontal distance (m)
Vo = initial velocity
t = time (s)
x = 20 × 5
x = 100m
3. Maximum height = (voy)²/2g
= 20²/ 2 × 9.8
= 400/19.6
= 20.41m
Answer:
The gravitational force on the elevator = 4500N
Explanation:
The given parameters are;
The force applied by the elevator, F = 4500 N
The acceleration of the elevator = Not accelerating
From Newton's third law of motion, the action of the cable force is equal to the reaction of the gravitational force on the elevator which is the weight, W and motion of the elevator as follows;
F = W + Mass of elevator × Acceleration of elevator
∴ F = W + Mass of elevator × 0 = W
F = 4500 N = W
The net force on the elevator is F - W = 0
The gravitational force on the elevator = W = 4500N.
Answer:
The atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus
Ruby, a variety of the mineral corundum is in the trigonal crystal system, with hexagonal scalenohedra crystals
Missing figure and missing details can be found here:
<span>http://d2vlcm61l7u1fs.cloudfront.net/media%2Fdd5%2Fdd5b98eb-b147-41c4-b2c8-ab75a78baf37%2FphpEgdSbC....
</span>
Solution:
(a) The work done by the spring is given by

where k is the elastic constant of the spring and

is the stretch between the initial and final position. Since x1=-8 in=-0.203 m and x2=5 in=0.127 m, we have

(b) The work done by the weight is the product of the component of the weight parallel to the inclined plane and the displacement of the cart:

where the negative sign is given by the fact that

points in the opposite direction of the displacement of the cart, and where

therefore, the work done by the weight is